

COSTS IMPOSED BY CLIMATE CHANGE IN THREE ECOREGIONS OF EAST AFRICA

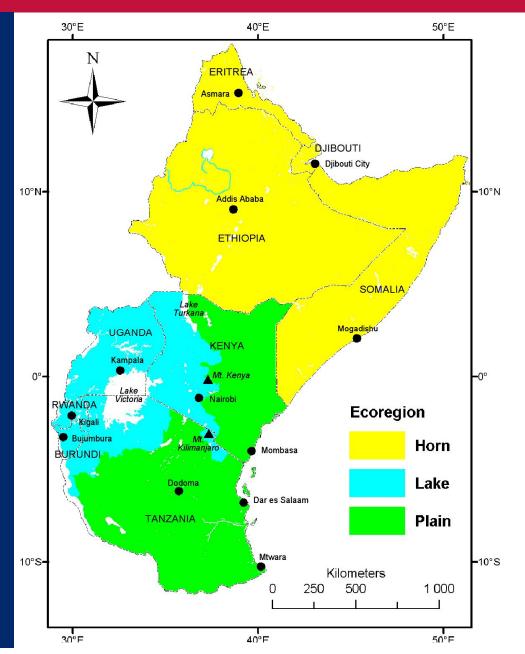
Study prepared for USAID East Africa Office of Regional Economic Growth and Integration

Presentation to USAID/Washington - February 2011 JOY E. HECHT, KATHARINE VINCENT, & JANE KAHATA INTERNATIONAL RESOURCES GROUP

ENVIRONMENTALLY SOUND DESIGN & MANAGEMENT CAPACITY BUILDING SUPPORT FOR AFRICA

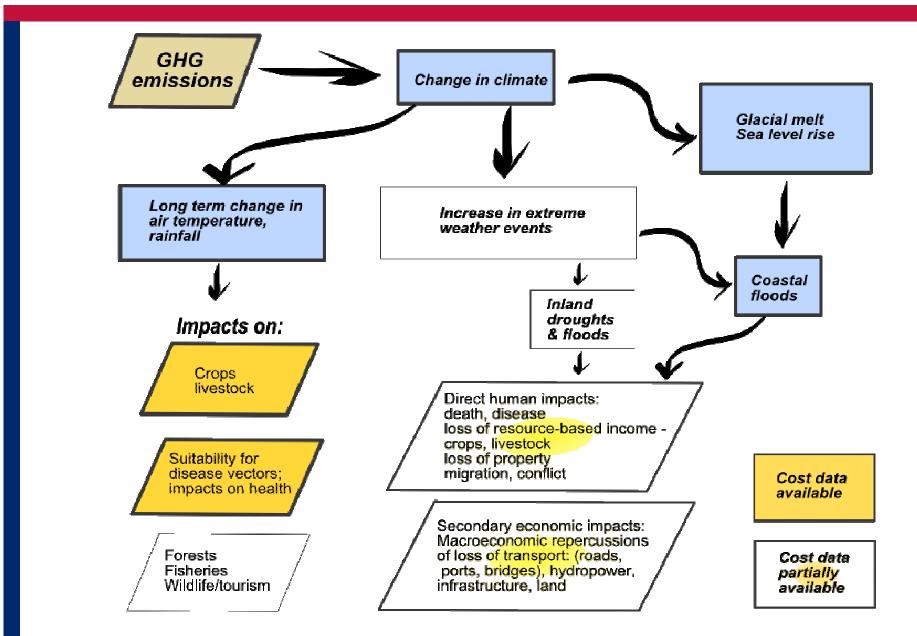
WHY DO A STUDY ON CLIMATE CHANGE?

• Climate change will affect all aspects of life in East Africa.


 Climate is one of the President's three major development initiatives; however it has major implications for design and effectiveness of Food for the Future and the Global Health Initiative as well.

• This study considers costs imposed by climate change, to provide evidence for use in policy and program design, both within the climate initiative and in the other two initiatives. • We compared the costs that climate change will impose in three ecoregions of East Africa.

What makes our study unique?


- It considers impacts on ecoregions rather than political boundaries
- It compares the burden in two ways:
 - across ecoregions
 - across areas of climate change impact
- It quantifies impacts in monetary terms.

WHERE ARE THE ECOREGIONS?

- Horn of Africa all of Eritrea, Ethiopia, Djibouti, and Somalia
- 2. Lake Victoria Basin all of Burundi, Rwanda, and Uganda, plus the highland areas of Kenya and Tanzania and high-elevation areas around Kilimanjaro
- Plains the eastern areas of Kenya and Tanzania

WHAT ARE THE AREAS OF CLIMATE CHANGE IMPACT?

WHAT DID WE LEARN?

Maximum ii	mpact of CC, in constant \$US 1000s	2050
Horn	crops	\$279,244
	livestock	-\$23,173
	health	-\$18,735,515
	coastal flooding	-\$244,100
Lake	crops	-\$1,462,686
	livestock	-\$90,942
	health	-\$10,291,811
	coastal flooding	not available
Plain	crops	\$534,509
	livestock	\$8,825
	health	-\$1,302,610
	coastal flooding	-\$287,100

METHODOLOGY: WHY MEASURE COST?

- To compare impacts and provide clear evidence for policy choice, we must use a standard metric.
- Many assessments of climate vulnerability are qualitative; this does not permit aggregation or standard comparison.
- Assessments use a variety of indicators; these also do not do not permit aggregation or comparison.
- Quantifying in terms of number of people affected does permit aggregation and comparison; however it does not capture significance of effects.
- Monetary measures can be aggregated and compared, and they show magnitude of impact.
- Therefore they provide quantitative evidence to prioritize resource allocation.
- If desired, monetary measures can later be linked to cost-effectiveness analysis when considering adaptation choices.

HOW WE DID IT

- To estimate costs, we worked from other published studies that projected climate change impacts in Africa.
- This gave us results in four areas:
 - Crops
 - Livestock
 - Health
 - Coastal flooding and sea level rise

SUMMARY RESULTS: CROPS

	Actual value	Impact of CC on value of crops, in constant \$US 1000s		
	2005	projected 2020	projected 2050	
Horn of Africa				
IFPRI - impact of CC (a)	\$2,609,214	\$162,616	\$279,244	
For comparison: GDP (b)	\$14,165,915	\$45,406,644	\$498,548,055	
Lake Victoria Basin				
IFPRI - impact of CC	\$6,597,037	-272,645	-1,462,686	
For comparison: GDP	\$31,328,363	\$86,507,100	\$706,148,368	
Plains				
IFPRI - impact of CC	\$1,547,854	380,986	534,509	
For comparison: GDP	\$13,736,871	\$38,501,225	\$310,860,006	

(a) Does not include Djibouti (b) Does not include Somalia

KEY POINTS: CROPS

- IFPRI data show climate change **increases** crop production in Horn and Plains.
- In Horn and Plains impacts of climate change are greater in 2020 and level off somewhat by 2050.
- Change due to CC up to 2050 almost always less than 0.5% of GDP – useful for comparison with other areas of climate change impact. Shares of agriculture GDP range from 1 to 3%.
 However GDP projections are only general estimates.
- These projections combine values of rice, wheat, maize, and other crops; we do not know breakdown or whether they are for export or domestic consumption. These distinctions will be important in designing Feed the Future activities.
- These projections assume land is available to increase production and/or that yields will increase. Testing the applicability of these assumption in the region will be essential for Feed the Future program design.

SUMMARY RESULTS: LIVESTOCK

		Change i	n value of Lives	tock due to (CC, 2002 - 20	50, in constant	\$US 1000s
	Value in 2002	Beef cattle	Dairy cattle	Goats	Sheep	Chickens	Total
Horn							
livestock:	\$1,715,018	\$7,186	-\$34,424	\$1,259	\$2,924	-\$119	-\$23,173
GDP: (a)	\$14,165,915						\$498,548,055
Lake							
livestock:	\$1,915,605	\$12,688	-\$110,854	\$7,322	\$1,175	-\$1,273	-\$90,942
GDP:	\$31,328,363						\$706,148,368
Plain							
livestock:	\$1,109,561	\$14,698	-\$3,591	-\$487	\$1,329	-\$3,124	\$8,825
GDP:	\$13,736,871						\$310,860,006

(a) Does not include Somalia

KEY POINTS: LIVESTOCK

- Impact on livestock depends on animal; dairy cattle and chickens generally do worse, beef cattle, goats and sheep do better.
- Camels were not part of the study from which these data derive; they will be important in East Africa.
- Total change in livestock value is always less than 0.1% of GDP; much less than crops
- The plains region is overall better off, whereas the others are worse off; this is similar at the country level.
- Understanding how livestock suitability will evolve with climate change is important for ensuring adequate nutrition through Feed the Future.

SUMMARY RESULTS: HEALTH

Costs in constant \$US 1000s:	2004-5	2050 W/out CC	2050 due to CC
Horn			
Malaria	-\$298,518	-\$12,692,899	-\$18,735,515
Protein-energy malnutrition	-\$202,256	-\$7,118,106	
Diarrheal diseases	-\$756,594	-\$26,627,191	
Comparison: GDP (a)	\$14,165,915		\$498,548,055
Lake			
Malaria	-\$1,385,358	-\$21,672,484	-\$10,291,811
Protein-energy malnutrition	-\$351,270	-\$7,917,713	
Diarrheal diseases	-\$1,691,411	-\$38,124,790	
Comparison: GDP	\$31,328,363		\$706,148,368
Plains			
Malaria	-\$148,479	-\$1,704,821	-\$1,302,610
Protein-energy malnutrition	-\$119,146	-\$2,696,232	
Diarrheal diseases	-\$614,725	-\$13,910,979	
Comparison: GDP	\$13,736,871		\$310,860,006

(a) Does not include Somalia

KEY POINTS: HEALTH

- Health literature suggests climate change will have significant impacts on malaria, diarrheal diseases and malnutrition.
 Projections only available for malaria.
- In 2004-5 malaria costs are:
 - 2.3% of GDP in the Horn
 - 4.4% of GDP in the Lake region
 - about 1% of GDP in the Plain region
- In 2050 average impact of malaria **due to CC** will be:
 - just under 4% of GDP in the Horn
 - 1.5% in the Lake region
 - 0.5 % in the Plain region
- Impact of CC in Lake region is less than in Horn because it was high in Lake region to start with.
- Relative to GDP, malaria costs are as much as 20 times greater than costs due to agriculture.
- This suggests that impacts of climate change on malaria must be part of the Global Health Initiative.

SUMMARY RESULTS: COASTAL FLOODING

	Costs due to sea level rise under three climate scenarios, in constant \$US 1000s						
		2000	2025	2050	2075	2100	
Horn	A1F1	-\$0	-\$3,700	-\$244,100	-\$161,800	-\$458,600	
	A1B	-\$0	-\$2,000	-\$60,100	-\$2,149,800	-\$249,500	
	B1	-\$0	-\$1,300	-\$5,900	-\$55,900	-\$114,600	
	GDP (a)	\$14,165,915	\$54,399,610	\$498,548,055	\$3,767,537,390	\$28,695,694,275	
Plains	A1F1	-\$130	-\$19,400	-\$287,100	-\$160,800	-\$445,000	
	A1B	-\$100	-\$14,700	-\$76,800	-\$2,626,800	-\$378,400	
	B1	-\$200	-\$14,900	-\$194,600	-\$1,710,800	-\$729,200	
	GDP	\$13,736,871	\$67,394,927	\$310,860,006	\$1,814,883,343	\$10,781,267,353	

(a) Does not include Somalia

KEY POINTS: COASTAL FLOODING

- We show results for three different climate change scenarios for coastal events.
- Estimates vary greatly over time and scenario; this is due to predictions in the model for when population change and flooding will occur.
- Even with highest sea level rise, costs relative to GDP are low, less than 0.1% of GDP.
- However the model assumes that all flooded land is agricultural, so it probably underestimates costs, especially of harm to ports, coastal roads, and other transport facilities.
- This undervalued harm may have significant implications for transport corridors, and particularly for shipping food into and within all of East Africa.

EXTREME EVENTS

- Extreme events include droughts, floods, drought-induced fire
- Data not available because they are much harder to model
- Consequences:
 - Direct humanitarian impacts on human life; death, illness, displacement, migration, conflict, loss of property
 - Direct loss of crops, livestock, other resource-based income
 - Damage to infrastructure with macroeconomic repercussions; e.g. power generation, ports, water and land-based transport
- Data to analyze direct costs would help determine where prevention is cost-effective and where it is not. This information is important in building resilience to unavoidable impacts of climate change.
- Damage to infrastructure will increase unreliability of transport corridors, with implications for food and commodity distribution throughout East Africa.
- Macroeconomic repercussions of infrastructure damage should be analyzed in order to prioritize the investments needed to increase resilience in the face of drought or flood.
- However, response to immediate humanitarian crises should not be determined by economic assessment.

IMPLICATIONS FOR USAID PROGRAMMING

- Target areas of climate change impact rather than ecoregions
- Biggest costs are in public health.
- However climate change will also have implications for other USAID initiatives.

IMPLICATIONS FOR GHI and FtF

- Activities crucial to the Global Health Initiative:
 - Work with regional institutions to identify specific places within the countries affected where malaria will become a particular problem with climate change
 - Work with national institutions to strengthen existing malaria control programs or create them where they do not yet exist.
 - Develop early warning systems predicting malaria or other epidemics based on rainfall and temperature data.
 - Analyze the impacts of climate change on health concerns other than malaria.
- Activities crucial to Feed the Future:
 - Work further with IFPRI data to answer additional questions about future agricultural production.
 - Downscale analysis of agricultural impacts to address availability of land for increasing production.

IMPLICATIONS FOR GLOBAL CLIMATE INITIATIVE

- Activities piloted by Climate Change Initiative:
 - Complement cost analysis with:
 - qualitative assessments of vulnerability in key areas
 - quantitative assessment of number and characteristics of people affected by different areas of climate change impact
 - Develop systematic data on extreme weather events, and insofar as possible analyze cost-effectiveness of alternate mechanisms for reducing disaster risk.
 - Run models on sea level rise with region-specific assumptions, incorporating both macroeconomic impacts of infrastructure loss and data on the consequences of extreme weather events.
 - Use data on consequences of extreme events to estimate how climate change may change the transport costs estimated through the Corridor Diagnostic Study.